
© 2015 Prof. Dr. R. Manthey Temporal Information Systems 1Temporal Information Systems 1111

SS 2015

Temporal Information Systems

Temporal Perspectives for SQL

Chapter 6

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 2Temporal Information Systems 2

Beyond "Classical" SQL

"The case studies in this book have amply demonstrated that SQL-92 does not look favorably
upon time-oriented applications. Even the most simple tasks, such as specifying a primary key
or joining two tables, become mired in complexity when time is introduced.

Fortunately, the clouds part at the horizon. A minor language extension proposed for SQL3
dramatically simplifies coding such applications by providing support for periods, valid time,
and transaction time."

(R. Snodgrass in „Developing Time-Oriented ...“ Chap. 12)

When Snodgrass wrote these lines (in 1998), there was a lot of optimism among a
group of researchers headed by him who had submitted a detailed extension proposal
to the SQL standardization bodies at ANSI and ISO based on their language TSQL2.

However, the proposal (called SQL/Temporal) never made it into the standard, mainly
due to „disagreements“ within the ISO Committee in 2001, as Snodgrass tells us on a
webpage he has devoted to these efforts:

http://www.cs.arizona.edu/people/rts/sql3.html

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 3Temporal Information Systems 3

SQL/Temporal

http://www.timeconsult.com/Software/Software.html

• Nevertheless, the ideas developed for the SQL/Temporal proposal are well designed
and meanwhile had a lot of influence on the development of relational DBMS on the
market. Therefore, we summarize the main ideas in this (final) chapter of the lecture.

• There is a lot of additional literature on these extensions available via the webpage men-
tioned on the previous slide (including the proposals to ANSI/ISO). The book by Snod-
grass discusses these issues in chapter 12. Please, help yourselves and read, if interested!

• This page also contains links to commercial DBMS offering limited and proprietary
versions of the TSQL concepts, e.g.,

• IBM DB2 10 for z/OS,
• Oracle 11g as part of its Workspace Manager and using the Flashback Archive
• Teradata 13.10

• A very interesting Java frontend to Oracle (using JDBC) is TimeDB still available on
the web (developed by an academic group in Zurich):

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 4Temporal Information Systems 4

PERIOD Data Type in SQL/Temporal (1)

In the SQL/Temporal proposal, the following characteristics of PERIOD have been
chosen:

• Three data type variants are available:
PERIOD(DATE), PERIOD(TIME), and PERIOD(TIMESTAMP)

• Four variants of PERIOD literals can be used, where [] indicates closed,
and () open time intervals. All combinations are possible: [), [], (], ().
An example literal of type PERIOD(DATE) is

• Period predicates are as follows in SQL/Temporal:
• OVERLAPS is applicable to pairs of PERIOD values, too. It is equivalent

to the following condition in terms of Allen operators:

• PRECEDES/SUCCEEDS stand for before and before-1, resp.
• p MEETS q implements p meets q p meets-1 q
• p CONTAINS q is short for p during q (p equals q)

PERIOD ' [2011-05-09 – 2011-05-14)'

p overlaps q p overlaps-1 q p starts q p starts-1 q p finishes q p finishes-1 q
p during q p during-1 q p equals q.

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 5Temporal Information Systems 5

PERIOD Data Type in SQL/Temporal (2)

In addition,
there is a
number of
PERIOD
constructors
available in
SQL/Temporal:

(For details, see
the Snodgrass
book and Chap. 12)

(from: R. Snodgrass „Developing Time-Oriented ...“, p. 407)

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 6Temporal Information Systems 6

PERIOD Data Type in SQL/Temporal (3)

(from: R. Snodgrass „Developing Time-Oriented ...“, p. 407)

(SQL3 used to be the name for that SQL standard intended to include SQL/Temporal.)

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 7

PERIOD Data Type in SQL/Temporal (4)

PERIOD '[2011-05-09 – 2011-05-14)'

9.5. 10.5. 11.5. 12.5. 13.5.

[)

{2011-05-09 ,2011-05-10 ,2011-05-11 ,2011-05-12 ,2011-05-13}

Each period corresponds to a set of instants:

The set is contiguous, i.e., for every two instants x and y in the set such that x < y
every other instant z such that x < z < y is in the set, too (wrt the resp. granularity).

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 8

PERIOD Data Type in SQL/Temporal (5)

As periods are sets of instants, it makes sense to use set operators on periods as well.
However, as periods are required to be contiguous („no gaps“), not every set of instants
is in turn a period. Thus, there is a need for restrictions on usage of temporal set operators,
in other words: Periods are not „closed“ under set operators!

SQL/Temporal expresses temporal set operators as P-variants of their relational counter-
parts in order to avoid overloading them.

Periods which either OVERLAPS or MEETS can be „combined“ into a single new period
which corresponds to the union of the sets of instants contained in these periods, e.g.:

PERIOD ' [2011-05-09 – 2011-05-12) '

9.5. 10.5. 11.5. 12.5. 13.5.

[)

{2011-05-09 ,2011-05-10 ,2011-05-11}

PERIOD ' [2011-05-11 – 2011-05-14)'

)[

2011-05-11,2011-05-12 ,2011-05-13}

{2011-05-09 ,2011-05-10 ,2011-05-11 ,2011-05-12 ,2011-05-13}

P_UNION

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 9

PERIOD Data Type in SQL/Temporal (6)

If any of the two operand periods of a union is BEFORE the other, the union set is no
longer contiguous, and thus not a period any more – for such input, period P_UNION is
undefined:

PERIOD ' [2011-05-09 – 2011-05-11) '

9.5. 10.5. 11.5. 12.5. 13.5.

[)

{2011-05-09 ,2011-05-10}

PERIOD ' [2011-05-12 – 2011-05-14) '

)[

{2011-05-12 ,2011-05-13}

{2011-05-09 ,2011-05-10 ,2011-05-11 ,2011-05-12 ,2011-05-13}

Similarly, the P_INTERSECT operator for periods is defined if and only if its two operands
OVERLAPS, e.g.:

P_UNION

PERIOD ' [2011-05-09 – 2011-05-13)' PERIOD ' [2011-05-11 – 2011-05-14)' P_INTERSECT

results in PERIOD ' [2011-05-11 – 2011-05-13)'

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 10

PERIOD Data Type in SQL/Temporal (7)

PERIOD ' [2011-05-09 – 2011-05-13)' PERIOD ' [2011-05-11 – 2011-05-14)'
P_EXCEPT

results in PERIOD ' [2011-05-09 – 2011-05-11)'

9.5. 10.5. 11.5. 12.5. 13.5.

[))[

As in relational algebra, the difference operator is not commutative for periods, too:

What is the necessary restriction in this case which ensures that the result of applying
a P_EXCEPT to two periods is a period again?

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 11Temporal Information Systems 11

SQL/Temporal: VALIDTIME and TRANSACTIONTIME Tables and Constraints

• The most important extension to „ordinary“ SQL wrt temporal support is to allow
tables to be specified as VALIDTIME and/or TRANSACTIONTIME tables already
at creation time. All timestamp columns are
automatically created and maintained (i.e.,
hidden) and have PERIOD values, e.g., for
a bitemporal table:

• Keys, foreign keys and other constraints expressed in „normal“ SQL style are inter-
preted as current constraints in SQL/Temporal.

• Sequenced constraints can be declared using the prefix VALIDTIME and/or
TRANSACTIONTIME, resp., e.g.:

CREATE TABLE student
matrNr integer,
name text,
. . .

AS VALIDTIME PERIOD(DATE)
AND TRANSACTIONTIME

CREATE TABLE student
matrNr integer VALIDTIME PRIMARY KEY,
. . .(Again VALIDTIME AND

TRANSACTION TIME
in case of both dimensions.)

(Granularity for TT timestamps
is provided by the DBMS.)

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 12Temporal Information Systems 12

SQL/Temporal: VALIDTIME Queries (1)

For illustrating the extended querying capabilites of SQL/Temporal, we just discuss
the case of valid time queries. Transaction time queries are quite analogous, for bi-
temporal queries please consult the sources mentioned.

All queries directed to tables with temporal support but not mentioning any temporal
dimension explicitly are considered current queries. This decision is characteristic of
SQL/Temporal in order to ease introduction of timestamps during the lifetime of a
database („temporal upward compatibility“).

Sequenced queries (wrt the valid time dimension) are very easily expressed by pre-
ceeding the non-temporal version with the keyword VALIDTIME. The following,
e.g., is the SQL/Temporal equivalent of the complex temporal join discussed in
chapter 3 of this lecture (involving four different cases):

VALIDTIME
SELECT S.SSN, AMOUNT, PCN
FROM SAL_HISTORY AS S, INCUMBENTS
WHERE S.SSN = INCUMBENTS.SSN

Provide the salary and
position history for all
employees.

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 13Temporal Information Systems 13

SQL/Temporal: VALIDTIME Queries (2)

NONSEQUENCED VALIDTIME
SELECT AMOUNT
FROM INCUMBENTS, POSITIONS, SAL_HISTORY
WHERE INCUMBENTS.SSN = SAL HISTORY.SSN

AND INCUMBENTS.PCN = POSITIONS.PCN
AND JOB_TITLE_CODE = 20730

• Nonsequenced queries are expressed by prefixing VALIDTIME with the additional
keyword NONSEQUENCED, e.g.:

List all the salaries, past and present,
of employees who had been a hazardous
waste specialist (20730) at some time.

When did employees receive
salary raises?

• A new temporal function VALIDTIME() is available for accessing the VALIDTIME
timestamp of each row, e.g.:

• A timeslice query is expressed using this function in the WHERE part, e.g.:

NONSEQUENCED VALIDTIME
SELECT S2.SSN, BEGIN(VALIDTIME(S2)) AS RAISE_DATE
FROM SAL HISTORY AS S1, SAL HISTORY AS S2
WHERE S2.AMOUNT > S1.AMOUNT

AND S1.SSN = S2.SSN
AND VALIDTIME(S1) MEETS VALIDTIME(S2)

. . WHERE VALIDTIME(S) OVERLAPS DATE '2010-12-31'OVERLAPS extended:
Accepts instant literals as
one of ist arguments, too!

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 14Temporal Information Systems 14

SQL/Temporal: VALIDTIME Modifications

Analogously, modifications of VALIDTIME tables not mentioning timestamps are
considered current modifications – a timestamp for new rows is automatically added
at insertion (always PERIOD ‚ [CURRENT_DATE, 9999-12-31) ').

Current deletions and updates of VALIDTIME tables can be expressed in their logical
form, i.e, without worrying about transforming them into several physical changes in
order to implement the „not forgetting anything idea“! The implementation of such
updates performed by the DBMS, however, still is the physical one, but the transforma-
tion remains hidden from the user.

Sequenced modifications are expressed by preceding the resp. logical modification by
the dimension keyword VALIDTIME followed by a period literal representing the
period of applicability of the modification, e.g.:

VALIDTIME PERIOD ' [1997-01-01 - 1997-12-31] '
DELETE FROM INCUMBENTS
WHERE SSN=111223333

AND PCN = 999071

Remove Bob as associate director
of the Computer Center for all of 1997.

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 15Temporal Information Systems 15

SQL/Temporal: VALIDTIME and TRANSACTIONTIME Modifications

NONSEQUENCED VALIDTIME
UPDATE INCUMBENTS
SET VALIDTIME = PERIOD [BEGIN(VALIDTIME(INCUMBENTS)),

(END(VALIDTIME(INCUMBENTS))
+ INTERVAL 1 YEAR))

WHERE SSN = 111223333
AND PCN = 999071

• Nonsequenced modifications require a preceding NONSEQUENCED again, indicating
that the timestamp columns are treated as „normal columns“ in the following change
statement, e.g.:

Extend Bob's position
as associate director
of the Computer Center
for an additional year.

For the transaction time dimension, sequenced and nonsequenced modifications are not
allowed (in order to preserve „faithfulness“ of the logging nature of this dimension).
Only current modifications are accepted, which are expressed in their logical form,
proper maintenance of TT timestamps is taken care of by the DBMS. TT timestamps
can be accessed using the function TRANSACTIONTIME(…), delivering a period.

Pro: Complex and lengthy temporal queries and updates are completely avoided!
Con: Using the compact keywords properly requires exact knowledge of the

hidden semantics of each construct (in order to know what really happens)!

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 16Temporal Information Systems 16

SQL/Temporal: Querying Bitemporal Tables

In case of a bitemporal table, it is particularly important to indicate the intended type
of query in the prefix of each query statement, e.g.:

• Past TT time slice query:
What was known in the DB about the owner of 7797 on 1.1.1998?

• Current TT time slice query (condition and type mainly implicit):

• Past VT+TT time slice query:
When was the information about the owner on ... entered into the DB?

VALIDTIME AND NONSEQUENCED TRANSACTIONTIME
SELECT customer
FROM Owner
WHERE property = 7797 AND TRANSACTIONTIME(Owner) OVERLAPS DATE '1998-01-01'

VALIDTIME SELECT customer FROM Owner WHERE property = 7797

NONSEQUENCED VALIDTIME AND TRANSACTIONTIME
SELECT customer
FROM Owner
WHERE property = 7797 AND VALIDTIME(Owner) OVERLAPS DATE '1998-01-04'

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 17Temporal Information Systems 17

Commercial Perspectives for SQL:2011: The IBM Case Study

http://www.ibm.com/developerworks/data/library/techarticle/dm-1204db2temporaldata/index.html

„IBM has worked with the ANSI and ISO SQL standard
committees to incorporate these extensions into the latest
SQL:2011 standard.
IBM is the first database vendor to support temporal data
management based on this new SQL standard.
Other database vendors use proprietary syntax for temporal
operations and for the definition of temporal tables.“

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 18Temporal Information Systems 18

DB2 Temporal DB Support (1)

from Sarocco, Nicola, Gandhi: „A matter of time: Temporal data management in DB2 10“, IBM 2012

i.e., application/valid time

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 19

DB2 Temporal DB Support (1a)

Sample scenario for the following slides:
Table for car insurance policies!

• id: Policy ID
• vin: Vehicle identification number
• annual_mileage: Estimated mileage of car
• rental_car: Rental car provided on repairs (Y/N)
• coverage_amount: Maximal damage amount covered by insurance

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 20Temporal Information Systems 20

DB2 Temporal DB Support (2)

from Sarocco, Nicola, Gandhi: „A matter of time: Temporal data management in DB2 10“, IBM 2012

current table

Timestamps automatically generated
on every change.

history table

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 21

DB2 Temporal DB Support (2a)

• System time: Details deviate from SQL:2011!

• Two tables rather than one, if system time is used:
• current table
• history table
• Explicit creation of both tables is needed!
• Separate step for linking them and switching automatic versioning on

(rather than WITH SYSTEM VERSIONING clause)

• PERIOD SYSTEM_TIME rather than PERIOD FOR SYSTEM_TIME.

• Possibility to introduce additional system-generated timestamp using transaction
start time of that transaction which contains the change command affecting this
table.

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 22Temporal Information Systems 22

DB2 Temporal DB Support (3)

from Sarocco, Nicola, Gandhi: „A matter of time: Temporal data management in DB2 10“, IBM 2012

automatically generated

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 23Temporal Information Systems 23

DB2 Temporal DB Support (4)

from Sarocco, Nicola, Gandhi: „A matter of time: Temporal data management in DB2 10“, IBM 2012

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 24Temporal Information Systems 24

DB2 Temporal DB Support (5)

from Sarocco, Nicola, Gandhi: „A matter of time: Temporal data management in DB2 10“, IBM 2012

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 25Temporal Information Systems 25

DB2 Temporal DB Support (6)

from Sarocco, Nicola, Gandhi: „A matter of time: Temporal data management in DB2 10“, IBM 2012

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 26Temporal Information Systems 26

DB2 Temporal DB Support (7)

from Sarocco, Nicola, Gandhi: „A matter of time: Temporal data management in DB2 10“, IBM 2012

current query

answer: 250.000 (over current table on previous slide)

past (timeslice) query

sequenced query

answer: 500.000 (over history table on previous slide)

(two variants: FROM … TO – [close, open) period, BETWEEN … AND – [close, close] period)

answer: 2 (over current and history table on previous slide)

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 27Temporal Information Systems 27

DB2 Temporal DB Support (8)

from Sarocco, Nicola, Gandhi: „A matter of time: Temporal data management in DB2 10“, IBM 2012

• Different from standard:
• Business time rather than application time
• No user-defined period name, but PERIOD BUSINESS_TIME throughout.

• As in standard:
• No separate history table.
• Timestamp values to be supplied by users in insert statements.
• Short form for temporal PK (and FK).

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 28Temporal Information Systems 28

DB2 Temporal DB Support (9)

from Sarocco, Nicola, Gandhi: „A matter of time: Temporal data management in DB2 10“, IBM 2012

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 29Temporal Information Systems 29

DB2 Temporal DB Support (10)

from Sarocco, Nicola, Gandhi: „A matter of time: Temporal data management in DB2 10“, IBM 2012

state before
UPDATE:

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 30Temporal Information Systems 30

DB2 Temporal DB Support (11)

from Sarocco, Nicola, Gandhi: „A matter of time: Temporal data management in DB2 10“, IBM 2012

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 31Temporal Information Systems 31

DB2 Temporal DB Support (12)

from Sarocco, Nicola, Gandhi: „A matter of time: Temporal data management in DB2 10“, IBM 2012

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 32Temporal Information Systems 32

DB2 Temporal DB Support (13)

from Sarocco, Nicola, Gandhi: „A matter of time: Temporal data management in DB2 10“, IBM 2012

state of
table:

overlaps
finishes

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 33Temporal Information Systems 33

DB2 Temporal DB Support (14)

from Sarocco, Nicola, Gandhi: „A matter of time: Temporal data management in DB2 10“, IBM 2012

Back to the „old“ terminology!

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 34Temporal Information Systems 34

DB2 Temporal DB Support (15)

from Sarocco, Nicola, Gandhi: „A matter of time: Temporal data management in DB2 10“, IBM 2012

Insert performed on 15.11.2011

Update performed on 1.3.2012

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 35Temporal Information Systems 35

DB2 Temporal DB Support (16)

from Sarocco, Nicola, Gandhi: „A matter of time: Temporal data management in DB2 10“, IBM 2012

current:

history:

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 36

PERIOD Data Type in Teradata SQL

Other vendors are active as well –
the new standard features will soon
be widely available (cross fingers)!

Just one recent example:
Teradata is already ahead of
SQL:2011 in supporting a data
type PERIOD (well in the tradi-
tion of SQL/Temporal)

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 37Temporal Information Systems 37Temporal Information Systems 37

Ultima

• Time for this lecture has come to an end by now.

• It was the main goal of this lecture to make you aware of the
complex and subtle nature of time and of maintaining temporal
information in a database properly.

• The lecture leaves you with a dilemma:
• On the one hand, you learned a lot about the tedious and

intricate way how temporal issues can be handled in
„classical“ SQL without specific support for managing time.

• On the other hand, you learned about really attractive new
syntactical SQL extensions which meanwhile made it into the
standard (and already partially into products). So why bother with
the „old style“?

• In order to understand the semantics of these extensions, however,
(which is really complex), knowing the „hard way“ is nearly inevitable.

• Another (intended) effect of knowing about the complex way of handling
time in SQL „as of now“ is that you have a kind of measure against
which to judge current and future new (?) features of commercial
products – if you have a vision, you can see how short they still come in many respects.

